• Special semiconductor crystal, such as cadmium sulfide or lead sulfide is used to make
photoresistors.
• When this semiconductor is placed in dark, electrons within its structure resist flow through
the resistor because they are too strongly bound to the crystal’s atoms.
• When this semiconductor is illuminated, incoming photons of light collide with the bound
electrons, stripping them from the binding atom, thus creating holes in the process.
• Liberated electrons contribute to the current flowing through the device.
photoresistors.
• When this semiconductor is placed in dark, electrons within its structure resist flow through
the resistor because they are too strongly bound to the crystal’s atoms.
• When this semiconductor is illuminated, incoming photons of light collide with the bound
electrons, stripping them from the binding atom, thus creating holes in the process.
• Liberated electrons contribute to the current flowing through the device.
No comments:
Post a Comment